Group of Metabolic Engineering of Bacteria

Andrey Yu. Gulevich
Head of the Group
Ph.D. (Chemistry)
INB, room 509E-Mail andrey.gulevich@gmail.com

Key words

metabolic engineering, Escherichia coli, producing strains, industrially-valuable chemicals, genome editing, synthetic biology


Research directions

  • Rational metabolic engineering of Escherichia coli for ensuring and further optimization of bio-based production of target value-added compounds.
  • Design and construction of highly efficient E. coli strains for production of industrially valuable and physiologically active substances, primarily, functionalized mono- and dicarboxylic acids as well as diols.
  • Optimization of functioning of native or creation of artificial pathways of target products biosynthesis.
  • Elucidation of peculiarities of hidden metabolism in directly engineered multiply-modified recombinant E. coli strains.
  • Unbalanced fermentation.


Selected publications:

  1. Skorokhodova A.Yu., Gulevich A.Yu., Debabov V.G. Engineering Escherichia coli for efficient aerobic conversion of glucose to fumaric acid. Biotechnology Reports. 2022, 33, e00703, (doi: 10.1016/j.btre.2022.e00703);
  2. Skorokhodova A.Y., Gulevich A.Y., Debabov V.G. Optimization of the anaerobic production of pyruvic acid from glucose by recombinant Escherichia coli strains with impaired fermentation ability via enforced ATP hydrolysis. Appl Biochem Microbiol. 2021, 57:245–251, (doi: 10.1134/S0003683821040153);
  3. Gulevich A.Y., Skorokhodova A.Y., Debabov V.G. Study of the potential of reversal of the fatty acid beta-oxidation pathway for stereoselective biosynthesis of (S)-1,3-butanediol from glucose by recombinant Escherichia coli strains. Biotekhnologiya. 2019, 35(5):12-19, (doi: 10.21519/0234-2758-2019-35-5-12-19);
  4. Skorokhodova A.Y., Sukhozhenko A.V., Gulevich A.Y., Debabov V.G. Activation of alternative respiration with internal electron acceptor during anaerobic glucose utilization in Escherichia coli strains with impaired fermentation ability. Appl Biochem Microbiol. 2019,  55:870–876, (doi: 10.1134/S0003683819090072);
  5. Skorokhodova A.Y., Gulevich A.Y., Debabov V.G. Engineering Escherichia coli for respiro-fermentative production of pyruvate from glucose under anoxic conditions. J Biotechnol. 2019, 293:47-55, (doi: 10.1016/j.jbiotec.2019.01.013);
  6. Skorokhodova A.Y., Gulevich A.Y., Debabov V.G. Inactivation of malic enzymes improves the anaerobic production of four-carbon dicarboxylic acids by recombinant Escherichia coli strains expressing pyruvate carboxylase. Appl Biochem Microbiol. 2018, 54:849–854, (doi: 10.1134/S0003683818090065);
  7. Skorokhodova A.Y., Stasenko A.A., Gulevich A.Y., Debabov V.G. Construction of a synthetic bypass for improvement of aerobic synthesis of succinic acid through the oxidative branch of the tricarboxylic acid cycle by recombinant Escherichia coli strains. Appl Biochem Microbiol. 2018, 54:245–251, (doi:10.1134/S0003683818030134);
  8. Skorokhodova, A.Y., Stasenko, A.A., Gulevich, A.Y., Debabov V.G. Effect of anaplerotic pathways activation on CO2-dependent anaerobic glucose utilization by Escherichia coli strains deficient in the main pathways of mixed acid fermentation. Appl Biochem Microbiol. 2018, 54:141–148,  (doi:10.1134/S0003683818020102);
  9. Skorokhodova A.Y., Gulevich A.Y., Debabov, V.G. Effect of extra- and intracellular sources of CO2 on anaerobic utilization of glucose by Escherichia coli strains deficient in carboxylation-independent fermentation pathways. Appl Biochem Microbiol. 2017, 53:304–309, (doi: 10.1134/S0003683817030140);
  10. Gulevich A.Y., Skorokhodova A.Y., Sukhozhenko A.V., Debabov V.G. Biosynthesis of enantiopure (S)-3-hydroxybutyrate from glucose through the inverted fatty acid beta-oxidation pathway by metabolically engineered Escherichia coli. J Biotechnol. 2017, 244:16-24, (doi: 10.1016/j.jbiotec.2017.01.009);
  11. Gulevich A.Y., Skorokhodova A.Y., Debabov V.G. Escherichia coli ydiO and ydiQRST genes encode components of acyl-CoA dehydrogenase complex of anaerobic fatty acid beta-oxidation pathway. Russ J Genet. 2016, 52:1101–1104, (doi: 10.1134/S1022795416100021);
  12. Gulevich, A.Y., Skorokhodova, A.Y., Stasenko, A.A., Shakulov R.S., Debabov V.G. Metabolic engineering of Escherichia coli for 1,3-butanediol biosynthesis through the inverted fatty acid beta-oxidation cycle. Appl Biochem Microbiol. 2016, 52:15–22, (doi: 10.1134/S0003683816010051);
  13. Skorokhodova A.Y., Morzhakova A.A., Gulevich A.Y., Debabov V.G. Manipulating pyruvate to acetyl-CoA conversion in Escherichia coli for anaerobic succinate biosynthesis from glucose with the yield close to the stoichiometric maximum. J Biotechnol. 2015, 214:33-42, (10.1016/j.jbiotec.2015.09.003);
  14. Skorokhodova A.Y., Gulevich A.Y., Debabov, V.G. Anaerobic biosynthesis of intermediates of reductive branch of tricarboxylic acids cycle by Escherichia coli strains with inactivated frdAB and sdhAB genes. Appl Biochem Microbiol. 2016, 52:679–684, (doi: 10.1134/S0003683816070061);
  15. Gulevich A.Y., Skonechny M.S., Sukhozhenko A.V., Skorokhodova A.Y., Debabov V.G. Study on aerobic biosynthesis of 4-hydroxybutyric acid by Escherichia coli cells upon heterologous expression of the 2-ketoglutarate decarboxylase gene. Appl Biochem Microbiol. 2015, 51: 804–811, (doi: 10.1134/S0003683815080037).