Laboratory of Ecology and Geochemical Activity of Microorganisms

хижняк1 Tatiana V. Khizniak
Dr. Sci. (Biology)
Head of Laboratory
INMI, room 405
Телефон +7 (499)135-10-21
E-Mail tanya_khijniak@mail.ru

Research directions:

  • Biodiversity and conditions for the existence of microorganisms involved in the conversion of inorganic sulfur compounds, variable-valence metals and other elements in natural and man-made reservoirs
  • Ecology, physiological and biochemical features and phylogeny of microorganisms
  • Bacterial recovery of heavy metals and radionuclides
  • Bacteriaapplication in biotechnology
  • Ecology and diversity of photosynthetic organisms, palaeomicrobiology, astrobiology
  • Fractionation of iron isotopes
  • Participation of microorganisms in the cycle of sulfur, nitrogen, iron
  • Transformation and immobilization of heavy metals and radionuclides

Key achievements

One of the main targets is a study of biodiversity conditions and functional role of microorganisms involved in the transformation of variable-valence elements (sulfur, nitrogen, metals) in natural and artificial habitats. This direction, with an emphasis on the study of eco-physiology of the main groups of microorganisms with unusual properties, has been successfully developing for over 15 years. There are following results of the study: main regularities of the functioning of anoxigenic phototrophic communities, incl. extreme ecosystems; a quantitative assessment of the role of phototrophic and some chemotrophic bacteria in the processes of carbon and sulfur cycling in modern water bodies (1980-2003). The research team created collection of pure cultures of chemotrophic and photosynthetic bacteria (about 400 strains), which serves as a main input for basic research and application in biotechnology. Team members made a major contribution to the improvement of systematics and taxonomy  of phototrophic group, sulfur-oxidizing, iron-manganese-oxidizing bacteria, bacteria using variable-valence elements. A new type of chemosynthesis has been discovered, bacteria isolated from the oxidation of antimony have been isolated and studied.

 

Main publications

2022

  1. Yakimov M.M , Merkel A.Y., Gaisin V.A., Pilhofer M., Messina E., Hallsworth J., Klyukina A.A., Tikhonova E.N., Gorlenko V.M. Cultivation of a vampire: ‘Candidatus Absconditicoccus praedator’. Environmental Microbiology. 2022. 24(1). 30-49.  DOI: 10.1111/1462-2920.15823
  2. Sorokin D.Y., Elcheninov A.G., Khijniak T.V., Zaharycheva A.P., Boueva O.V., Ariskina E.V., Bunk B., Spröer C., Evtushenko L.I., Kublanov I.V., Hahnke R.L. Natronosporangium hydrolyticum gen. nov., sp. nov., haloalkaliphilic polyhydrolytic actinobacterium from a soda solonchak soil in Central Asia. Systematic and Applied Microbiology. 2022. 45(3). 126307.  https://doi.org/10.1016/j.syapm.2022.126307.
  3. de Rink R., Lavender M.B., Liu D., Klok J.B.M., Sorokin D.Y., Buisman C.J.N., ter Heijne A. Continuous electron shuttling by sulfide oxidizing bacteria as a novel strategy to produce electric current. J. Hazardous Materials. 2022. 424: 217458. https://doi.org/10.1016/j.jhazmat.2021.127358
  4. Steiniger F., Sorokin D.Y., Deppenmeier U. Process of energy-conservation in the extremely haloalkaliphilic methyl-reducing methanogen Methanonatronarchaeum thermophilum. FEBS J. 2022. 289: 549-563. doi: 10.1111/febs.16165
  5. Muntyan M.S., Viryasov M.B., Sorokin D.Y., Skulachev V.P. Sodium energetic cycle in the natronophilic bacterium Thioalkalivibrio versutus. International Journal of Molecular Sciences. 2022. 23: 1965. https://doi.org/10.3390/ijms23041965

2021

  1. Sorokin D.Y., Roman P., Kolganova T.V. Halo(natrono)archaea from hypersaline lakes can utilize sulfoxides other than DMSO as electron acceptors for anaerobic respiration. Extremophiles. 2021. 25: 173-180. https://doi.org/10.1007/s00792-021-01219-y
  2. Ahn A-C., Jongepier E., Schuurmans J.M., Rijpstra W.I.C., Sinninghe Damsté J.S., Galinski E.A., Roman P., Sorokin D., Muyzer G. Molecular and physiological adaptations to low temperature in Thioalkalivibrio strains isolated from soda lakes with different temperature regimes. mSystems 2021. 6: e01202-20. https://doi.org/10.1128/mSystems.01202-20
  3. Sorokin D.Y., Khijniak T.V., Zakharycheva A.P., Elcheninov A.G., Hahnke R.L., Boueva O.V., Ariskina E.V., Bunk B., Kublanov I.V., Evtushenko L.I. Natronoglycomyces albus gen. nov., sp. nov, a haloalkaliphilic actinobacterium from a soda solonchak soil. Int J Syst Evol Microbiol. 2021. 71: 004804. DOI: 10.1099/ijsem.0.004804
  4. Sorokin D.Y., Messina E., Smedile F., La Cono V., Hallsworth J.E., Yakimov M.M. Carbohydrate-dependent sulfur respiration in halo(alkali)philic archaea. Environmental Microbiology. 2021. 23(7): 3779-3808. DOI: 10.1111/1462-2920.15421
  5. Bryantseva I.A., Grouzdev D.S., Krutkina M.S., Ashikhmin A.A., Kostrikina N.A., Koziaeva V.V., Gorlenko V.M. ‘Candidatus Chloroploca mongolica’ sp. nov. a new mesophilic filamentous anoxygenic phototrophic bacterium. FEMS Microbiology Letters. 2021. 368(16): fnab107. https://doi.org/10.1093/femsle/fnab107
  6. Sorokin D.Y. Microbial utilization of glycine betain in hypersaline soda lakes. Microbiology. 2021. 90(5): 567-575.  DOI: 10.1134/S0026261721050143
  7. Sorokin D.Y., Yakimov M.M., Messina E., Merkel A.Y., Koenen M., Bale N.J., Sinninghe Damsté J.S. Halapricum desulfuricans sp. nov., carbohydrate-utilizing, sulfur-reducing haloarchaea from  hypersaline lakes. Systematic and Applied Microbiology. 2021. 44: 126249.  https://doi.org/10.1016/j.syapm.2021.126249
  8. Sorokin D.Y., Diender M., Merkel A.Y., Koenen M., Bale N.J., Pabst M., Sinninghe Damsté J.S., Sousa D.Z. Natranaerofaba carboxydovora gen. nov., sp. nov., an extremely haloalkaliphilic CO-utilizing acetogen from a hypersaline soda lake representing a novel deep phylogenetic lineage in the class ‘Natranaerobiia’. Environmental Microbiology. 2021. 23(7): 3460-3476. DOI: 10.1111/1462-2920.15241

2020

  1. Boldyreva D.I., Babenko V.V., Kanygina A.V., Lunina O.N., Letarova M.A., Kostryukova E.S., Savvichev A.S., Gorlenko V.M., Letarov A.V. Genome sequences of a green-colored Chlorobium phaeovibrioides strain containing two plasmids and a closely related plasmidfree brown-colored strain. Microbiology Resource Announcements. 2020.  9: e01172-19. https://doi.org/10.1128/MRA.01172-19.
  2. Kiragosyan K., Picard M., Sorokin D.Y., Dijkstra J., Klok J.B.M., Roman P., Janssen A.J.H. Effect of dimethyl disulfide on the sulfur formation and microbial community composition during the biological H2S removal from sour gas streams. Journal of Hazardous Materials. 2020. 386. 121916. Doi: 10.1016/j.jhazmat.2019.121916
  3. Mardanov A.V., Sorokin D.Y., Beletsky A.V., Ravin N.V. Complete Genome Sequence of Candidatus Syntrophocurvum alkaliphilum strain B(2M), obtained from the metagenome of a salt-tolerant alkaliphilic anaerobic syntrophic butyrate-degrading consortium. Microbiology Resource Announcements. 2020. 9: e01511-19. https://doi.org/10.1128/MRA.01511-19.
  4. Tikhonova T.V., Sorokin D.Y., Hagen W.R, Khrenova M.G., Muyzer G., Rakitina T.V., Shabalin I.G., Trofimov A.A., Tsallagov S.I., Popov V.O. Trinuclear copper biocatalytic center forms an active site of thiocyanate dehydrogenase. Proc Nat Ac Sci USA (PNAS). 2020. 117: 5280-5290.  https://doi.org/10.1073/pnas.1922133117
  5. Kleikamp H.B.C., Lin Y.M., McMillan D.G.G., Geelhoed J.S., Naus-Wiezer S.N.H., Van Baarlen P., Saha C., Louwen R., Sorokin D.Y., Van Loosdrecht M.C.M., Pabst M. Tackling the chemical diversity of microbial nonulosonic acids – a universal large-scale survey approach. Chemical Science. 2020. 11: 3074-3080. DOI: 10.1039/c9sc06406k
  6. Sorokin D.Y., Merkel A.Y., Messina E., Yakimov M.M., Itoh T., Mesbah N.M., Wiegel J., Oren A. Reclassification of the genus Natronolimnobius: proposal of two new genera, Natronolimnohabitans gen. nov. to accommodate Natronolimnobius innermongolicus and Natrarchaeobaculum gen. nov. to accommodate Natronolimnobius aegyptiacus and Natronolimnobius sulfurireducens. IJSEM. 2020. 70: 3399–3405.  DOI: 10.1099/ijsem.0.004186
  7. Gaisin V.A., Kooger R., Grouzdev D.S., Gorlenko V.M., Pilhofer M. Cryo-electron tomography reveals the complex ultrastructural organization of multicellular filamentous Chloroflexota (Chloroflexi) bacteria. Frontiers in Microbiology. 2020. 11: 1373. doi: 10.3389/fmicb.2020.01373
  8. Kiragosyan K., Picard M., Timmers P.H.A., Sorokin D.Y., Klok J.B.M., Roman P., Janssen A.J.H. Effect of methanethiol on process performance, selectivity and diversity of sulfur-oxidizing bacteria in a dual bioreactor gas biodesulfurization system. J Hazardous Materials. 2020. 387:  paper 123002. https://doi.org/10.1016/j.jhazmat.2020.123002
  9. Fomenkov A., Grabovich M.Y., Dubinina G., Leshcheva N., Mikheeva N., Vincze T., Roberts R.J. Complete genome sequences and methylome analysis of two environmental spirochaetes. Microbiology Resource Announcements. 2020. 9(15): e00236-20. DOI: 10.1128/MRA.00236-20
  10. La Cono V., Messina E., Rohde M., Arcadi E., Ciordia S., Crisafi F., Denaro R., Ferrer M., Giuliano L., Golyshin P.N., Golyshina O.V., Hallsworth J.E., La Spada G., Mena M.C., Merkel A.Y., Shevchenko M.A., Smedile F., Sorokin D.Y., Toshchakov S.V., Yakimov M.M. Symbiosis between nanohaloarchaeon and haloarchaeon is based on utilization of different polysaccharides. Proceedings of the National Academy of Sciences USA (PNAS). 2020. 117(33). 20223-20234. https://doi.org/10.1073/pnas.200
  11. Gaisin V.A., Grouzdev D.S., Krutkina M.S., Osipova N.S., Koziaeva V.V., Gorlenko V.M., Ashikhmin A.A., Sinetova M.A. ‘ Candidatus Oscillochloris kuznetsovii’ – a novel mesophilic filamentous anoxygenic phototrophic Chloroflexales bacterium from arctic coastal environments. FEMS Microbiology Letters. 2020. 367(19): fnaa158.   DOI: 10.1093/femsle/fnaa158
  12. Chernyh N.A., Neukirchen S., Frolov E.N., Sousa F.L., Miroshnichenko M.L., Merkel A.Y., Pimenov N.V., Sorokin D.Y., Ciordia S., Mena M.C., Ferrer M., Golyshin P.N., Lebedinsky A.V., Pereira I.A.C., Bonch-Osmolovskaya E.A. Dissimilatory sulfate reduction in the archaeon ‘Candidatus Vulcanisaeta moutnovskia’ sheds light on the evolution of sulfur metabolism. Nature Microbiol. 2020. 5: 1428–1438. DOI: 10.1038/s41564-020-0776-z
  13. Sorokin D.Y., Mosier D., Zorz J.K., Dong X., Strous M. Wenzhouxiangella strain AB-CW3, a proteolytic bacterium from hypersaline soda lakes that preys on cells of Gram-positive bacteria. Frontiers in Microbiology. 2020. 11: 597686. DOI: 10.3389/fmicb.2020.597686

2019

  1. Sorokin D.Y., Makarova K.S., Abbas B., Ferrer M., Golyshin P.N., Galinski E.A., Ciorda S., Carmen Mena M., Merkel A.Y., Wolf Y.I., van Loosdrecht M.C.M., Koonin E.V. Reply to ‘Evolutionary placement of Methanonatronarchaeia.’ Nature Microbiology: Correspondence, 2019. 4: 560-561
  2. Sorokin D.Y., Khijniak T.V., Elcheninov A.G., Toshchakov S.V., Kostrikina N.A., Bale N.J., Sinninghe Damste J.S. and Kublanov I.V. Halococcoides cellulosivorans gen. nov., sp. nov., an extremely halophilic cellulose-utilizing haloarchaeon from hypersaline lakes. IJSEM. 2019. DOI 10.1099/ijsem.0.003312.
  3. Bale N.J., Sorokin D.Y., Hopmans E.C., Koenen M., Rijpstra W.I.C., Villanueva L., Wienk H., Sinninghe Damste J.S. New insights into the polar lipid composition of extremely halo(alkali)philic euryarchaea from hypersaline lakes. Frontiers in Microbiology. 2019. 10: 377.  doi: 10.3389/fmicb.2019.00377
  4. Berben T., Overmars L., Sorokin D.Y. and Muyzer G. Diversity and distribution of sulfur oxidation-related genes in Thioalkalivibrio, a genus of chemolithoautotrophic and haloalkaliphilic sulfur-oxidizing bacteria. Frontiers in Microbiology. 2019. 10: 160. doi: 10.3389/fmicb.2019.00160
  5. Gorlenko V.M., Burganskaya E.I., Bryantseva I.A. Phototrophic community of high mineralized mesothermal sulfur Berikey springs (Dagestan).  Microbiology. 2019. 88(2):  DOI: 10.1134/S0026365619020046
  6. Grouzdev D.S., Burganskaya E.I., Krutkina M.S., Sukhacheva M.V., Gorlenko V.M. Genome sequence of “Candidatus Viridilinea halotolerans” Chok-6, isolated from a saline sulfide-rich spring. Microbiol Resour Announc. 2019. 8:e01614-18. https://doi.org/10.1128/MRA.01614-18.

2018

  1. Sorokin D.Y., Muntyan M.S., Toshchakov S.V., Korzhenkov A., Kublanov I.V. Phenotypic and genomic properties of a novel deep-lineage haloalkaliphilic member of the phylum Balneolaeota from soda lakes possessing Na+-translocating proteorhodopsin. Frontiers in Microbiology. 2018. 9: 2672. DOI: 10.3389/fmicb.2018.02672
  2. Sorokin D.Y., Messina E., La Cono V., Ferrero M., Ciordia S., Mena M.C., Toshakov S.V., Golyshin P.N., Yakimov M.M. Sulfur respiration in a Group of facultatively anaerobic natronoarchaea ubiquitous in hypersaline soda lakes. Frontiers in Microbiology. 2018. 9: 2359.  DOI: 10.3389/fmicb.2018.02359
  3. Savvichev A.S., Babenko V.V., Lunina O.N., Letarova M.A., Boldyreva D.I., Veslopolova E.F., Demidenko N.A., Kokryatskaya N.M., Krasnova E.D., Gaisin V.A., Kostryukova E.S., Gorlenko V.M., Letarov A.V. Sharp water column stratification with an extremely dense microbial population in a small meromictic lake, Trekhtzvetnoe. Environmental Microbiology. 2018. 20(10): 3784-3797. DOI: 10.1111/1462-2920.14384
  4. Grouzdev D.S., Rysina M.S., Bryantseva I.A., Gorlenko V.M., Gaisin V.A. Draft genome sequences of ‘Candidatus Chloroploca asiatica’ and ‘Candidatus Viridilinea mediisalina’, candidate representatives of the Chloroflexales order: phylogenetic and taxonomic implications. Standards in Genomic Sciences. 2018. 13(1): 24. doi: 10.1186/s40793-018-0329-8
  5. Lavrentyeva E.V., Radnagurueva A.A., Barkhutova D.D., Belkova N.L., Zaitseva S.V., Namsaraev Z.B., Gorlenko V.M., Namsaraev B.B. Bacterial diversity and functional activity of microbial communities in hot springs of the Baikal rift zone. Microbiology. 2018. 87(2): 272-281. DOI: 10.1134/S0026261718020078
  6. Namsaraev Z.B., Gorlenko V.M., Buryukhaev S.P. Successional changes in the microbial community of the alkaline lake Khilganta during the dry season. Microbiology. 2018. 87(4): 591-596. DOI: 10.1134/S0026261718040124
  7. Safonov A., Tregubova V., Ilin V., Boldyrev K., Zinicovscaia I., Frontasyeva M., Khijniak T. Comparative study of lanthanum, vanadium, and uranium bioremoval using different types of microorganisms. Water, Air, and Soil Pollution. 2018. 229(3), 82
  8. Grouzdev D.S., Gaisin V.A., Krutkina M.S., Bryantseva I.A., Lunina O.N., Savvichev A.S., Gorlenko V.M. Genome sequence of Prosthecochloris sp. strain ZM and Prosthecochloris sp. strain ZM-2, isolated from an Arctic meromictic lake. Microbiology Resource Announcement. 2018. 7(21): e01415-18
  9. Timmers P.H.A., Vavourakis C.D., Kleerebezem R., Damsté J.S.S., Muyzer G., Stams A.J.M., Sorokin D.Y., Plugge C.M. Metabolism and occurrence of methanogenic and sulfate-reducing syntrophic acetate oxidizing communities in haloalkaline environments.  Front Microbiol. 2018. 9: 3039. doi: 10.3389/fmicb.2018.03039
  10. Fomenkov A., Sun Z., Vincze T., Dubinina G., Orlova M., Tarlachkov S.V., Anton B.P., Grabovich M.Y., Roberts R.J. Complete genome sequence of the freshwater bacterium Beggiatoa leptomitoformis strain D-401. Genome Announcement. 2018. 6(17). pii: e00311-18. doi: 10.1128/genomeA.00311-18.
  11. Orlova M.V., Tarlachkov S.V., Kulinchenko E.I., Dubinina G.A., Tutukina M.N., Grabovich M.Y. Genomics and biochemistry of metabolic pathways for the C1 compounds utilization in colorless sulfur bacterium Beggiatoa leptomitoformis D-402. Indian Journal of Microbiology. 2018. 58(4): 415-422
  12. BurganskayaE.I., BryantsevaI.A.,GaisinV.A., GrouzdevD.S., RysinaM.S., BarkhutovaD.D., BaslerovR.V., GorlenkoV.M.,KuznetsovB.B. BenthicphototrophiccommunityfromKiransodalake, south-easternSiberia.  Extremophiles. 2018. 22(2): 211-220. doi: 10.1007/s00792-017-0989-0
  13. Ferrer M., Sorokin D.Y.,Wolf Y.I., Ciordia S., Mena M.C., Bargiela R., Koonin E.V., Makarova K.S. Proteomic analysis of Methanonatronarchaeum thermophilum AMET1,  a representative of a putative new class of Euryarchaeota, “Methanonatronarchaeia”. Genes. 2018. 9(2). pii: E28;   doi:10.3390/genes9020028
  14. Namsaraev Z., Samylina O., Sukhacheva M., Borisenko G., Sorokin D.Y., Tourova T. Effect of salinity on diazotrophic activity and microbial composition of phototrophic communities from Bitter-1 soda lake (Kulunda Steppe, Russia). Extremophiles. 2018. 22:  651-663
  15. Osipov E.M., Lilina A.V., Tsallagov S.I., Safonova T.N., Sorokin D.Y.,Tikhonova T.V., Popov V.O. Structure of flavocytochrome c sulfide dehydrogenase associated with copper binding protein CopC from the periplasm of haloalkaliphilic chemolithoautotrophic sulfur-oxidizing gammaproteobac terium Thioalkalivibrio paradoxusARh1. Acta Crystallographica. 2018.  D74: 632-642
  16. Sorokin D.Y., Khijniak T.V., Kostrikina N.A., Elcheninov A.G., Toshchakov S.V., Bale N.J.,Sinninghe DamstéJ.S.,Kublanov I.V. Natronobiforma cellulotrophagen. nov., sp. nov., a novel haloalkaliphilic member of the family Natrialbaceae(class Halobacteria) from hypersaline alkaline lakes.Syst Appl Microbiol. 2018.  41(4): 355-362 https://doi.org/10.1016/j.syapm.2018.04.002
  17. Sorokin D.Y., Merkel A.Y., Abbas B., Makarova K., Wolf Y., Rijpstra W.I.C., Koenen M., Sinninghe Damsté J.S., Galinski E.A., Koonin E.V., van Loosdrecht M.C.M. Methanonatronarchaeum thermophilumgen. nov., sp. nov, and ‘Candidatus Methanohalarchaeum thermophilum’ – extremely halo(natrono)philic methyl-reducing methanogens from hypersaline lakes representing a novel euryarchaeal class Methanonatronarchaeiaclassis nov.Int J Syst Evol Microbiol 2018. 68: 2199-2208
  18. Vavourakis C.D., Andrei A.-S., Mehrshad M., Ghai R., Sorokin D.Y., Muyzer G. A metagenomics roadmap to the uncultured genome diversity in hypersaline soda lake sediments. Microbiome. 2018. 6: 168 https://doi.org/10.1186/s40168-018-0548-7
  19. Namsaraev Z.B., Gorlenko V.M.,Buryukhaev S.P. Successional changes in the microbial community of the alkaline lake Khilganta during the dry season. Microbiology. 2018. 87(4): 591-596
  20. Lavrentyeva EV., Radnadurueva A.A., Barkhutova D.D., Belkova N.L., Zaitseva S.V., Namsaraev Z.B., Gorlenko V.M.,Namsaraev B.B. Bacterial diversity and functional activity of microbial communities in hot springs of the Baikal rift zone. Microbiology. 2018. 87(2): 272-281
  21. Safonov A., Tregubova V., Ilin V., Boldyrev K., Zinicovscaia I., Frontasyeva M., Khijniak T.Comparative study of lanthanum, vanadium and uranium bioremoval using different types of microorganisms. Water Air and Soil Pollution. 2018. 229(3): 82  doi: 10/1007/s11270-018-3740-2

2017

  1. Ahn A.-C., Meier-Kolthoff J.P., Overmars L., Richter M., Woyke T., Sorokin D.Y., Muyzer G. Genomic diversity within the haloalkaliphilic genus Thioalkalivibrio. PLoS ONE. 2017. 12(3): e0173517. doi:10.1371/journal.pone.0173517
  2. Berben T., Balkema C., Sorokin D.Y.,Muyzer G. Transcriptomic analysis of the genes involved in thiocyanate oxidation during growth in continuous culture of haloalkaliphilic sulfur-oxidizing bacterium Thioalkalivibrio thiocyanoxidansARh 2T. mSystems. 2017. 2(6): e00102-17.  doi: 10.1128/mSystems.00102-17
  3. Berben T., Overman L.,Sorokin D.Y., Muyzer G. Comparative genome analysis of three thiocyanate oxidizing Thioalkalivibriospecies isolated from soda lakes. Front Microbiol. 2017. 8: article 254
  4. Dubinina G.,Savvichev A.S., Orlova M.V., Gavrish E., Verbarg S., Grabovich M.Y. Beggiatoa leptomitoformis sp. Nov., the first freshwater member of the genus capable of chemolithoautotrophic growth. IJSEM. 2017. 67: 197–204 DOI 10.1099/ijsem.0.001584
  5. Gaisin V.A., Kalashnikov A.M., Grouzdev D.S., Sukhacheva M.V., Kuznetsov B.B., Gorlenko V.M.Chloroflexus islandicussp. nov., a thermophilic filamentous anoxygenic phototrophic bacterium from a geyser. IJSEM. 2017. 67(5): 1381-1386. doi: 10.1099/ijsem.0.001820
  6. Kopejtka K., Tomasch J., ZengY., Tichý M., Sorokin D.Y., Koblížek M. Genome analysis suggests a regressive evolution of phototrophy among haloalkaliphilic Rhodobacterales. Gen Biol Evol. 2017. 9: 1950-1962
  7. Melton E.D., Sorokin D.Y., Overmars L., Lapidus A.L., Pillay M., Ivanova N., Glavina del Rio T., Kyrpides N.C., Woyke T., Muyzer G. Draft genome sequence of Dethiobacter alkaliphilusstrain AHT1T, a gram-positive sulfidogenic polyextremophile. Standards in Genomic Sciences. 2017. 12: article57
  8. Savvichev A.S., Kokryatskaya N.M., Zabelina S.A., Rusanov I.I., Zakharova E.E., Veslopolova E.F., Lunina O.N., Patutina E.O., Bumazhkin B.K., Gruzdev D.S., Sigalevich P.A., Pimenov N.N., Kuznetsov B.B., Gorlenko V.M.Microbial processes of the carbon and sulfur cycles in an ice-covered, iron-rich meromictic lake Svetloe (Arkhangelsk region, Russia). Environ Microbiol. 2017. 19(2): 659-672.  doi: 10.1111/1462-2920.13591
  9. Sorokin D.Y., Cherhyh N.A. Desulfonatronospira sulfatiphilasp. nov., and Desulfitispora elongatasp. nov., the two novel haloalkaliphilic sulfidogenic bacteria from soda lakes.Int J Syst Evol Microbiol. 2017. 67: 396-401
  10. Sorokin D.Y., Khijniak T.V., Galinski E.A., Kublanov I.V. Natronotalea proteinilyticagen. nov., sp. nov, and Longimonas haloalkaliphiliasp. nov., extremely salt-tolerant alkaliphilic members of the phylum Rhodothermaeotaisolated from hypersaline soda lakes. Int J Syst Evol Microbiol. 2017.67: 4161–4167
  11. Sorokin D.Y., Kolganova T.V., Khijniak T.V.,Jones B.E., Kublanov I.V. Culturable diversity of aerobic polyhydrolytic haloalkaliphilic bacteria in saline alkaline soils. Peer J. 2017.  5:e3796
  12. Sorokin D.Y., Kublanov I.V., Khijniak T.V.Natronospira proteinivoragen. nov., sp. nov., an extremely salt tolerant alkaliphilic protein-utilizing gammaproteobacterium from hypersaline soda lakes. Int J Syst Evol Microbiol. 2017.67: 2604-2608
  13. Sorokin D.Y., Makarova K.S, Abbas B., Ferrer M., Golyshin P.N., Galinski E.A., Ciordia S., Mena M.C., Merkel A.Y., Wolf Y.I., van Loosdrecht M.C.M., Koonin E.V. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nature Microbiol. 2017. 2(8): article 17081. doi: 10.1038/nmicrobiol.2017.81
  14. Sorokin D.Y., Messina E., Smedile F., Roman P., Sinninghe Damste J.S., Ciordia S., del Carmen Mena M., Ferrer M., Golyshin P.N., Kublanov I.V., Samarov N.I., Toshchakov S.V., La Cono V.,Yakimov M.M. Discovery of the anaerobic lithoheterotrophic haloarchaea, ubiquitous in hypersaline habitats. The ISME Journal. 2017. 11:1245–1260
  15. Welles L., Abbas B., Sorokin D.Y., Lopez-Vazquez C.M., Hooijmans C.M., van Loosdrecht M.C.M., Brdjanovic D. Metabolic response of ‘CandidatusAccumulibacter phosphatis’ clade II C to changes in influent P/C ratio. Front Microbiol. 2017. 7: article 2121.

2016
1.     Daelman M.R.J., Sorokin D.,Kruse O., van Loosdrecht M.C.M., Strous M.  Haloalkaline bioconversions for methane production from microalgae grown on sunlight.Trends Biotechnol.2016. 34(6): 450-457. doi: 10.1016/j.tibtech.2016.02.008
2.     Dziuba M., Koziaeva V., Grouzdev D.,Burganskaya E.,Baslerov R., Kolganova T., Chernyadyev A., Osipov G., Andrianova E., Gorlenko V., Kuznetsov B. Magnetospirillum caucaseumsp. nov., Magnetospirillum marisnigrisp. nov. and Magnetospirillum moscoviensesp. nov., freshwater magnetotactic bacteria isolated from three distinct geographical locations in European Russia. IJSEM. 2016. 66(5): 2069-2077. doi: 10.1099/ijsem.0.000994
3.     Fomenkov A., Vincze T., Grabovich M., Anton B.P., Dubinina G., Orlova M., Belousova E., Roberts R.J.  Complete genome sequence of a strain of Azospirillum thiophilumisolated from a sulfide spring. Genome Announc. 2016. 4(1). pii: e01521-15. doi: 10.1128/genomeA.01521-15
4.    Gaisin V.A., Grouzdev D.S, Namsaraev Z.B., Sukhacheva M.V., Gorlenko V.M.,Kuznetsov B.B. Biogeography of thermophilic phototrophic bacteria belonging to Roseiflexus genus. FEMS Microbiol Ecol.2016. 92(3). pii: fiw012. doi: 10.1093/femsec/fiw012
5.    Gaisin V.A., Ivanov T.M., Kuznetsov B.B.,Gorlenko V.M., Grouzdev D.S. Draft genome sequence of Chloroflexus sp. strain isl-2, a thermophilic filamentous anoxygenic phototrophic bacterium isolated from the Strokkur geyser, Iceland. Genome Announc. 2016. 4(4):e00714-16. doi:10.1128/genome A.00714-16
6.    Melton E.D., Sorokin D.Y., Overmars L., Chertkov O., Clum A., Pillay M., Ivanova N., Shapiro N., Kyrpides N.C., Woyke T., Lapidus A.L., Muyzer G. Complete genome sequence of Desulfurivibrio alkaliphilusstrain AHT2(T), a haloalkaliphilic sulfidogen from Egyptian hypersaline alkaline lakes.  Stand. Genomic Sci. 2016. 11: 67. doi: 10.1186/s40793-016-0184-4
7.    Messina E.,Sorokin D.Y., Kublanov I.V., Toshchakov S., Lopatina A., Arcadi E., Smedile F., La Spada G., La Cono V., Yakimov M.M. Complete genome sequence of ‘Halanaeroarcha-eum sulfurireducens’ M27-SA2, a sulfur-reducing and acetate-oxidizing haloarchaeon from the deep-sea hypersaline anoxic lake Medee.Stand. Genomic Sci. 2016. 11:35. doi: 10.1186/s40793-016-0155-9
8.    Obbels D., Verleyen E., Mano M.J.,Namsaraev Z., Sweetlove M., Tytgat B., Fernandez-Carazo R., De Wever A., D’hondt S., Ertz D., Elster J., Sabbe K., Willems A., Wilmotte A., Vyverman W. Bacterial and eukaryotic biodiversity patterns in terrestrial and aquatic habitats in the Sør Rondane Mountains, Dronning Maud Land, East Antarctica. FEMS Microbiol Ecol. 2016. 92(6): fiw041. doi: 10.1093/femsec/fiw041
9.    Orlova M.V.,Tarlachkov S.V.,Dubinina G.A.,Belousova E.V.,Tutukina M.N.,Grabovich M.Y. Genomic insights into metabolic versatility of a lithotrophic sulfur-oxidizing diazotrophic AlphaproteobacteriumAzospirillum thiophilum. FEMS Microbiol. Ecol. 2016.  92(12): fiw199  doi:dx.doi.org/10.1093/femsec/fiw199
10.  Poser A., Vogt C., Knöller K., Sorokin D.Y., Finster K.W., Richnow H.-H. Sulfur and oxygen isotope fractionation during bacterial sulfur disproportionation under anaerobic haloalkaline conditions. Geomicrobiology Journal. 2016.33(10): 934-941. doi: 10.1080/01490451.2015.1128993
11.  Roman P., Klok J., Sousa J., Broman E., Dopson M., van Zessen E., Bijmans M.,Sorokin D.Y., Janssen A. Selection and application of sulfideoxidizing microorganisms able to withstand thiols in gasbiodesulfurization systems. Environ Sci Technol. 2016. 50: 12808−12815.
12.  Roman P., Lipińska J., Bijmans M.F., Sorokin D.Y.,Keesman K.J., Janssen A.J.  Inhibition of a biological sulfide oxidation under haloalkaline conditions by thiols and diorgano polysulfanes.  Water Res. 2016. 101: 448-456. doi: 10.1016/j.watres.2016.06.003
13.  Sharko F.S., Shapovalova A.A., Tsygankova S.V., Komova A.V., Boulygina E.S., Teslyuk A.B., Gotovtsev P.M., Namsaraev Z.B., Khijniak T.V.,Nedoluzhko A.V., Vasilov R.G. Draft genome sequence of “Halomonas chromatireducens” strain AGD 8-3, a haloalkaliphilic chromate- and selenite-reducing Gammaproteobacterium. Genome Announc. 2016.  4(2). pii: e00160-16. doi: 10.1128/genomeA.00160-16
14.  Soler-Jofra A., Stevens B., Hoekstra M., Picioreanu C., Sorokin D.Y., van Loosdrecht M.C.M., PérezJ.Importance of abiotic hydroxylamine conversion on nitrous oxide emissions during nitritation of reject water. Chem Engineer J. 2016. 287: 720-726.
15.  Sorokin D.Y.,Abbas B., Geleijnse M., Kolganova T.V., Kleerebezem R., van Loosdrecht M.C.  Syntrophic associations from hypersaline soda lakes converting organic acids and alcohols to methane at extremely haloalkaline conditions.  Environ Microbiol., 2016; 18(9): 3189-3202. doi: 10.1111/1462-2920.13448
16.   Sorokin D.Y., Chernyh N.A. ‘Candidatus Desulfonatronobulbus propionicus’: a first haloalkaliphilic member of the order Syntrophobacterales from soda lakes. Extremophiles. 2016. 20(6): 895-901.
17. Sorokin D.Y.,Kublanov I.V., Gavrilov S.N., Rojo D., Roman P., Golyshin P.N., Slepak V.Z., Smedile F., Ferrer M., Messina E., La Cono V., Yakimov M.M. Elemental sulfur and acetate can support life of a novel strictly anaerobic haloarchaeon. ISME Journal. 2016. 10(1): 240-252   doi: 10.1038/ismej.2015.79
18. Sorokin D.Y.,Kublanov I.V., Yakimov M.M., Rijpstra W.I., Sinninghe Damsté J.S.   Halanaeroarchaeum sulfurireducensgen. nov., sp. nov., the first obligately anaerobic sulfur-respiring haloarchaeon, isolated from a hypersaline lake.  Int J Syst. Evol. Microbiol. 2016. 66(6): 2377-2381. doi: 10.1099/ijsem.0.001041
19. Sorokin D.Y.,Rakitin A.L., Gumerov V.M., Beletsky A.V., Sinninghe Damsté J.S., Mardanov A.V., Ravin N.V.  Phenotypic and genomic properties of Chitinispirillum alkaliphilum gen. nov., sp. nov., a haloalkaliphilic anaerobic chitinolytic bacterium representing a novel class in the Phylum Fibrobacteres.  Front Microbiol. 2016. 7: 407. doi: 10.3389/fmicb.2016.00407
20. Tytgat B., Verleyen E., Sweetlove M., D’hondt S., Clercx P., Van Ranst E., Peeters K., Roberts S.,Namsaraev Z., Wilmotte A., Vyverman W., Willems A. Bacterial community composition in relation to bedrock type and macrobiota in soils from the Sør Rondane Mountains, East Antarctica. FEMS Microbiol Ecol. 2016. 92(9). pii: fiw126. doi: 10.1093/femsec/fiw126
21.  Vavourakis C.D., Ghai R., Rodriguez-Valera F., Sorokin D.Y.,Tringe S.G., Hugenholtz P., Muyzer G. Metagenomic insights into the uncultured diversity and physiology of microbes in four hypersaline soda lake brines. Front Microbiol. 2016. 7: 211. doi: 10.3389/fmicb.2016.00211
22.  Antipov A.N., Khijniak T.V.Vanadate reduction under alkaline conditions by haloalkaliphilic Halomonasstrains. Microbiology. 2016. 85(6): 658-663.
23. Kashkak E.S., Bel’kova N.L., Danilova E.V., Dagurova O.P., Namsaraev B.B., Gorlenko V.M.Phylogenetic and functional prokaryotic diversity in the Hoito-Gol mesothermal mineral spring (Eastern Sayan Mountains, Buryat Republic). Microbiology. 2016. 85(5): 592-603.
24. Lunina O.N., Savvichev A.S., Krasnova E.D., Kokryatskaya N.M., Veslopolova E.F., Kuznetsov B.B., Gorlenko V.M.Succession processes in the anoxygenic phototrophic bacterial community in Lake Kislo-Sladkoe (Kandalaksha Bay, White Sea). Microbiology. 2016. 85(5): 570-582.
25. Nuyanzina-Boldareva E.N., Akimov V.N., Takaichi S., Gorlenko V.M. New strains of an anaerobic anoxygenic phototrophic bacterium Porphyrobacter donghaensisisolated from a Siberian thermal spring and weakly mineralized lake. Microbiology. 2016. 85(1): 77-86.

2015
1.    Berben T., Sorokin D.Y., Ivanova N., Pati A., Kyrpides N., Goodwin L.A., Woyke T., Muyzer G. Partial genome sequence of the haloalkaliphilic soda lake bacterium Thioalkalivibrio thiocyanoxidans ARh 2T. Standards in Genomic Sciences. 2015. 10: 85.
2.    Berben T., Sorokin D.Y., Ivanova N., Pati A., Kyrpides N., Goodwin L.A., Woyke T., Muyzer G. Partial genome sequence of Thioalkalivibrio thiocyanodenitrificansARhD1(T), a chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacterium capable of complete denitrification. Standards in Genomic Sciences. 2015. 10: 84.
3.    Berben T., Sorokin D.Y., Ivanova N., Pati A., Kyrpides N., Goodwin L.A., Woyke T., Muyzer G. Complete genome sequence of Thioalkalivibrio paradoxus type strain ARh1(T), an obligatelychemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacterium isolated from a Kenyan soda lake.Standards in Genomic Sciences. 2015. 10: 105.
4.     Dubinina G.,Grabovich M., Gronow S., Gavrich E., Akimov V. Spirochaeta sinaicasp. nov., a halophilic spirochaete isolated from a cyanobacterial mat. IJSEM. 2015. 65(11): 3872-3877  doi: 10.1099/ijsem.0.000506.
5.    Fomenkov A., Vinze T., Grabovich M., Dubinina G.,Brian A., Orlova M., Belonsove E., Roberts R. Complete genome sequence of the freshwater colorless sulfur bacterium Beggiatoa leptomitiformis neotype strain D-402T. Genome Announcement, 2015, 3(6): pii: e01436-15. doi: 10.1128/genomeA.01436-1
6.    Gaisin V.A.,Kalashnikov A.M., Sukhacheva M.V., Namsaraev Z.B.,Barhutova D.D., Gorlenko V.M.,& Kuznetsov B.B. Filamentous anoxygenic phototrophic bacteria from cyanobacterial mats of Alla hot springs (Barguzin Valley, Russia). Extremophiles.2015. 19(6): 1067-1076.
7.    Muntyan M.S., Cherepanov D.A., Malinen A.M., Bloch D.A., Sorokin D.Y., Severina I.I., Ivashina T.V., Lahti R., Muyzer G., Skulachev V.P. Cytochromecbb3of Thioalkalivibriois a Na+-pumping cytochrome oxidase.Proc Nat Ac Sci  USA (PNAS). 2015.112: 7695–7700
8.    Namsaraev Z.B.Ecological niches of Antarctic phototrophic communities during global glaciation. Microbiology. 2015. 84(2): 125-129.
9.    Namsaraev Z.B.,Zaitseva S.V., Gorlenko V.M.,Kozyreva L.P.,Namsaraev B.B.  Microbial processes and factors controlling their activities in alkaline lakes of the Mongolian plateau. Chinese Journal of Oceanology and Limnology. 2015. 33 (6): 1391-1401.
10.  Sorokin D.Y., Abbas B., Geleijnse M., Pimenov N.V., Sukhacheva M.V., van Loosdrecht M.C.M. Methanogenesis at extremely haloalkaline conditions in soda lakes of Kulunda Steppe (Altai, Russia). FEMS Microbiol Ecol. 2015. 91(4): pii: fiv016. doi: 10.1093/femsec/fiv016.
11.  Sorokin D.Y., Abbas B.A., Sinninghe Damsté J.S.,Sukhacheva M.V., van Loosdrecht M.C. Methanocalculus alkaliphilussp. nov., and Methanosalsum natronophilussp. nov., novel haloalkaliphilic methanogens from hypersaline soda lakes.IJSEM. 2015. 65: 3739-3745.
12.  Sorokin D.Y., Banciu H.A., Muyzer G. Functional microbiology of soda lakes. Curr Opin Microbiol. 2015. 25: 88-96.
13.  Sorokin D.Y., Chernyh N.A., Poroshina M.N. Desulfonatronobacter acetioxydans sp. nov., – a first acetate-oxidizing extremely salt-tolerant alkaliphilic sulfate-reducing bacterium from a hypersaline soda lake. Extremophiles. 2015.19: 899-907.
14.  Sorokin D.Y., Kublanov I.V., Toschakov S.V., Kolganova T.V. Halo(natrono)archae isolated from hypersaline lakes utilize cellulose and chitin as growth substrates.Front Microbiol 2015. 6: article 942. doi: 10.3389/fmicb.2015.00942
15.  Sousa J.A.B., Sorokin D.Y.,Bijmans M.F.M., Plugge C.M., Stams A.J.M. Ecology and application of haloalkaliphilic microbial communities. Appl Microbiol Biotechnol. 2015. 99: 9331–9336.
16.  Tammis J., Sorokin D.Y., Jiang Y., van Loosdrecht M.C.M., Kleerbazem R. Lipid recovery from a vegetable oil emulsion using microbial enrichment culture. Biotechnology for Biofuels. 2015. 8:39.  doi: 10.1186/s13068-015-0228-9
17.  Watts M.P., Khijniak T.V.,Boothman C., Lloyd J.R. Treatment of alkaline Cr(VI)-contaminated leachate with an alkaliphilic metal-reducing bacterium. Appl. Environ. Microbiol., 2015. 81(16): 5511-5518. doi: 10.1128/AEM.00853-15
18.  Zakharyuk A.G., Kozyreva L.P., Khijniak T.V.,Namsaraev B.B.,Shcherbakova V.A. Desulfonatronum zhilinaesp. nov., a novel haloalkaliphilic sulfate-reducing bacterium from soda Lake Alginskoe, Trans-Baikal Region, Russia. Extremophiles. 2015. 19(3): 673-80. doi: 10.1007/s00792-015-0747-0
19.  Bryantseva I.A., Gaisin V.A., Gorlenko V.M. Rhodobaculum claviformegen. nov., sp. nov. a new alkaliphilic nonsulfur purple bacterium. Microbiology/ 2015. 84(2): 247-255.

2014 and before
1. Bryantseva I.A., Gorlenko V.M.,Kompantseva E.I., L. Achenbach аnd M.T. Madigan. Heliorestis daurensis, gen, nov. sp. nov., an alkaliphilic rod-to-coiled- shaped phototrophic heliobacterium from a Siberian soda lake. — Arch. Microbiol., 1999, 172: 167-174.
2. GorlenkoV.M., I.A. Bryantseva, A.M. Kalashnikov, V.A. Gaisin, M.V. Sukhacheva, D.S. Gruzdev, andB.B. Kuznetsov. Candidatus ‘Chloroploca asiatica’ gen. nov., sp. nov., a new mesophilic filamentous anoxygenic phototrophic bacterium. — Microbiology, 2014, 83(6): 838–848.
3. Keppen O.I., Tourova T.P., Kuznetsov B.B., Ivanovsky R.N., Gorlenko V.M. Proposal of Oscillochloridaceae fam.nov. on the basis of a phylogenetic analysis of the filamentous anoxygenic phototrophic bacteria, and emended description of Oscillochlorisand Oscillochloris trichoidesin comparison with further new isolates. — IJSEM, 2000, 50: 1529-1537.
4. Khijniak T.V., Medvedeva-Lyalikova N.N., Simonoff M. Reduction of pertechnetate by haloalkaliphilic strains of Halomonas. — FEMS Microbiol. Ecol., 2003, 44(1): 109-115 (DOI: 10.1016/S0168-6496(03)00018-7).
5. Lloyd J.R., Ridley J., Khizniak T.V., Lyalikova N.N., Macaskie L.E. Reduction of technetium by Desulfovibrio desulfuricans: biocatalyst characterization and use in flow-through bioreactor. — Applied and Environmental Microbiology, 1999, 65(6): 2691-2696.
6. Sorokin D.Y., and Kuenen J.G. Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes. — FEMS Microbiology Reviews, 2005, 29 (4): 685-702 (DOI: 10.1016/j.femsre.2004.10.005)
7. Sorokin D.Y., Janssen A.J.H. and Muyzer G. Biodegradation potential of halo(alkali)philic prokaryotes. — Critical Reviews in Environmental Science and Technology, 2012, 42(8): 811-856 (DOI: 10.1080/10643389.2010.534037).
8. Sorokin D.Y., van Pelt S., Tourova T.P., Evtushenko L.I. Nitriliruptor alkaliphilusgen. nov., sp. nov., a deep lineage haloalkaliphilic actinobacterium from soda lakes capable of growth on aliphatic nitriles and proposal of Nitriliruptoraceae fam. nov. and Nitriliruptorales ord. nov. — IJSEM, 2009, 59: 248-253 (DOI: 10.1099/ijs.0.002204-0).
9. Surkov A.V., Dubinina G.A., Lysenko A.M., Glockner F.O., Kuever J. Dethiosulfovibrio russensissp.nov., Dethiosulfovibrio marinussp. nov. and Dethiosulfovibrio acidaminovoranssp. nov., novel anaerobic, thiosulfate- and sulfur- reducing bacteria isolated from ‘Thiodendron’ sulfur mats in different saline environments. — IJSEM, 2001, 51: 327 – 337.
10. Suzuki S., Kuenen J.G., Schipper K., van der Velde S., Ishii S., Wu A., Sorokin D.Y., Tenney A., Ying M.X., Morrill P.L., Kamagata Y., Muyzer G., Nealson K.H. Life in the ultrabasic: study of novel hydrogen-utilizing Betaproteobacteria from a continental serpentinization site. — Nature Communications, 2014, 5: article 3900  (DOI: 10.1038/ncomms4900).