

119071, Москва, Ленинский пр-т, д. 33, стр. 2

Тел. +7 (495) 954-52-83, факс (495) 954-27-32

www.fbras.ru, info@fbras.ru

24 MOJI 2024 Nº 85-01-

Ha Nº

7

Тыректор Федерального

государственного учреждения

«Федеральный исследовательский

центр «Фундаментальные основы

биотехнологии» РАН

д.б.н. Федоров А.Н.

#

ЗАКЛЮЧЕНИЕ

Института биохимии имени А.Н. Баха Федерального государственного учреждения «Федеральный исследовательский центр «Фундаментальные основы биотехнологии» РАН на диссертационную работу Бакуновой Алины Константиновны «Трансаминаза D-аминокислот из *Haliscomenobacter hydrossis*: каталитические свойства и структура» на соискание ученой степени кандидата химических наук по специальности 1.5.4. Биохимия, выполненную в лаборатории инженерной энзимологии Института биохимии имени А.Н.Баха Федерального государственного учреждения «Федеральный исследовательский центр «Фундаментальные основы биотехнологии» Российской академии наук.

В 2019 году Бакунова Алина Константиновна окончила кафедру химии природных соединений Химического факультета Московского государственного университета имени М.В.Ломоносова по специальности 04.05.01 «Фундаментальная и прикладная химия». С 2019 г. Алина Константиновна работает в лаборатории инженерной энзимологии Института биохимии им. А.Н. Баха Федерального исследовательский учреждения «Федеральный государственного «Фундаментальные основы биотехнологии» Российской академии наук в должности младшего научного сотрудника. В 2020 году Алина Константиновна поступила в очную аспирантуру ФИЦ «Фундаментальные основы биотехнологии» РАН. В 2024 г. Бакуновой A.K. присвоена квалификация «Исследователь. исследователь» (диплом об окончании аспирантуры 107705 0002687). Все кандидатские экзамены сданы.

Научный руководитель – доктор химических наук Безсуднова Екатерина Юрьевна, ведущий научный сотрудник лаборатории инженерной энзимологии,

Федерального исследовательского центра «Фундаментальные основы биотехнологии» Российской академии наук.

По результатам рассмотрения диссертации «Трансаминаза D-аминокислот из *Haliscomenobacter hydrossis*: каталитические свойства и структура» принято следующее заключение:

Актуальность работы

Данная работа посвящена изучению функцинирования активного центра новой трансаминазы D-аминокислот. Структурно-функциональная характеристика трансаминаз востребована при разработке биокатализаторов с заданной субстратной специфичностью.

Анализ живых систем и применение ферментов для целей синтетической химии невозможны без понимания свойств ферментов, природных катализаторов, способных многократно ускорять химические реакции в «мягких» условиях и осуществлять превращения, которые в неживой природе не происходят. Пиридоксаль-5'-фосфат (PLP)-зависимые ферменты широко распространены в природе, они участвуют в азотистом и энергетическом обмене в клетке, являются ключевыми ферментами метаболизма D-, L-аминокислот, вовлечены в метаболизм углеводов, жиров и т.д. Среди биотехнологически значимых ферментов пиридоксаль-5'-фосфат зависимые трансаминазы успешно зарекомендовали себя в стереоселективном аминировании органических соединений. Несмотря на давнюю историю, исследование белковых структур, ассоциированных с пиридоксалевым катализом, сохраняет актуальность с фундаментальной и практической точек зрения: изучение многообразия протекающих с участием пиридоксаль-5'-фосфата ферментативных превращений позволяет анализировать молекулярные основы причинно-следственных связей в ферментативном катализе и клеточном метаболизме, изучение взаимосвязи структуры и функции ферментов создает основы для эффективной разработки биокатализаторов для биотехнологии.

Среди трансаминаз IV типа укладки PLP-связывающего домена выделяется семейство трансаминаз **D**-аминокислот (DATA). **DATA** катализируют стереоселективный обратимый перенос аминогруппы с D-аминокислоты на акетокислоту с образованием новых D-аминокислоты и α-кетокислоты. До настоящего структурно-функциональный анализ ЭТОГО семейства ограничивался трансаминазой D-аминокислот из Bacillus subtilis и несколькими гомологичными ей DATA. Устройство активного центра этих DATA, их субстратная специфичность сформировали представления о ферментативном D-трансаминировании как об узкозадачном процессе. Но недавно были обнаружены DATA с дополнительной активностью с первичными (R)-аминами, что указывало на организацию активного центра отличную от канонических DATA и на разнообразие функций DATA в клетке. Предметом диссертационной работы является исследование каталитических свойств и структуры трансаминазы D-аминокислот с неканонической организацией активного центра, которая обеспечивает высокую каталитическую эффективность

трансаминирования, стереоспецифичность, стабильность и широкую субстратную специфичность трансаминазы.

Целью настоящей работы явилось определение структурных основ субстратной специфичности, каталитической эффективности и стереоселективности трансаминазы D-аминокислот из *Haliscomenobacter hydrossis*.

Научная новизна

Поиск новых трансаминаз D-аминокислот выявил в геноме бактерии Haliscomenobacter hydrossis последовательность новой трансаминазы IV типа укладки PLP-связывающего домена, которая характеризуется отличной от известных трансаминаз D-аминокислот организацией активного центра. Проведена структурнофункциональная характеристика рекомбинантной формы новой трансаминазы. Описан новый активный центр у трансаминаз D-аминокислот. Обнаружены некоторые новые закономерности взаимосвязи структуры и функции у трансаминаз, в том числе структурные детерминанты дополнительной активности с первичными (R)-аминами. Впервые проведен детальный анализ предстационарной кинетики трансаминаз D-аминокислот методом «остановленного потока».

Теоретическая и практическая значимость

Комплексный метод исследования взаимосвязи структуры трансаминазы D-аминокислот из H. hydrossis позволил охарактеризовать новый активный центр у трансаминаз, ключевыми аминокислотными остатками которого являются три остатка аргинина и остаток лизина. При этом установлена многофункциональность остатков аргинина и эффективность точечных замен в таком активном центре. Кроме того, продемонстрирована роль удаленных от кофактора аминокислотных остатков в стабилизации рабочей конформации PLP через сеть нековалентных взаимодействий. Далее показана возможность применения трансаминазы ИЗ H. hydrossis как биокатализатора синтеза разнообразных ароматических и алифатических D-аминокислот с энантиомерным избытком более 99%. Обоснованы практические достоинства нового активного центра трансаминазы Dаминокислот, а именно: высокая каталитическая эффективность, стереоселективность и возможность регулирования активности. Стоит отметить, что важной характеристикой трансаминаз И PLР-зависимых ферментов вообще является стабильность холофермента. Нестабильность холофермента негативно сказывается на выходе целевого продукта, поскольку приводит к накоплению менее стабильной и неактивной апоформы и, как следствие, остановке реакции. В ходе исследований трансаминазы из H. hydrossis определены факторы, стабилизирующие PLP в активном центре, предложены подходы к стабилизации холофермента в реакционных условиях, предложены подходы к 100% реактивации холофермента. По исследований в банк данных белковых структур (Protein Data Bank) депонированы пять структур (PDB коды 7Р7X, 8АНU, 8RAF, 8RAI, 8YRT).

Конкретное личное участие автора в получении результатов

Во всех опубликованных работах вклад автора является определяющим. Автор принимал непосредственное участие в постановке научных задач, планировании и проведении экспериментов, анализе полученных результатов и их представлении. На защиту вынесены только те положения и результаты экспериментов, в получении которых роль соискателя является определяющей.

Степень достоверности

Достоверность представленных в диссертации Бакуновой А.К. данных и сделанных выводов обеспечена использованием современных методов исследования, проведением независимых экспериментов с использованием положительных и отрицательных контролей, и подтверждается воспроизводимостью значений измерений. Все эксперименты проводились на сертифицированном оборудовании. Полученные данные анализировали с использованием современных методов статистической обработки.

Соответствие содержания диссертации специальности, по которой она рекомендуется к защите

Содержание диссертационной работы и опубликованные по ней материалы соответствуют специальности 1.5.4. Биохимия, результаты диссертационного исследования изложены в опубликованных работах.

Апробация работы

Основные результаты диссертации изложены в 5 оригинальных статьях в международных рецензируемых журналах, входящих в перечень ВАК. Результаты работы были представлены в виде стендовых и устных докладов на международных конференциях (XV Всеросссийская конференция молодых ученых с международным участием в Саратове в 2021 году; VI съезд биохимиков России в Сочи-Дагомыс в 2022 году; 13th BGRS/SB в Новосибирске в 2022 году; 7th International Conference on Novel Епгутев в Грайфсвальде (Германия) в 2023 году; 13-ая Международная научная конференция «Биокатализ. Фундаментальные исследования и применение» в Суздале в 2023 году; X Всероссийская научная молодежная школа-конференция «Химия, физика, биология: пути интеграции» в Москве в 2024 году).

Полнота изложения материалов диссертации в работах, опубликованных соискателем ученой степени.

По материалам диссертационной работы опубликовано 5 статей в журналах, входящих в Перечень ведущих рецензируемых журналов и изданий ВАК, и 6 тезисов, опубликованных в материалах конференций, которые приведены ниже.

Список публикаций

Статьи в рецензируемых научных изданиях, индексируемых Web of Science:

- 1. Bakunova A.K., Nikolaeva A.Y., Rakitina T. V., Isaikina T.Y., Khrenova M.G., Boyko K.M., Popov V.O., Bezsudnova E.Y. The uncommon active site of D-amino acid transaminase from *Haliscomenobacter hydrossis*: biochemical and structural insights into the new enzyme // Molecules. 2021. Vol. 26(16). P. 1-18. IF 4,4.
- 2. Bakunova A.K., Isaikina T.Yu., Popov V.O., Bezsudnova E.Yu. Asymmetric synthesis of enantiomerically pure aliphatic and aromatic D-amino acids catalyzed by transaminase from *Haliscomenobacter hydrossis* // Catalysts. 2022. Vol. 12(12):1551. P. 1-17. IF 4.1.
- 3. Bakunova A.K., Kostyukov A.A., Kuzmin V.A., Popov V.O., Bezsudnova E.Yu. Mechanistic aspects of the transamination reactions catalyzed by D-amino acid transaminase from *Haliscomenobacter hydrossis* // Biochimica et Biophysica Acta (BBA) Proteins and Proteomics. 2023. Vol. 1871(2). P 1-8. IF 4,1.
- 4. Бакунова А.К., Матюта И.О., Бойко К.М., Попов В.О., Безсуднова Е.Ю. Механизм ингибирования D-циклосерином трансаминазы D-аминокислот из *Haliscomenobacter hydrossis* // Биохимия (Москва). 2023. Т. 88(5). С. 841-853. IF 2,8.
- 5. Bakunova A.K., Matyuta I.O., Minyaev M.E., Isaikina T.Yu., Boyko K.M., Popov V.O., Bezsudnova E.Yu. Multifunctionality of arginine residues in the active sites of non-canonical D-amino acid transaminases // Archives of Biochemistry and Biophysics. 2024. Vol. 756. P. 1-10. IF 3,9

Тезисы докладов:

- 1. Бакунова А.К., Ракитина Т.В., Бойко К.М., Безсуднова Е.Ю. Трансаминаза D-аминокислот из *Haliscomenobacter hydrossis* потенциальный биокатализатор синтеза природных и неприродных D-аминокислот // Современные проблемы теоретической и экспериментальной химии: Межвуз. сборник науч. трудов XV Всеросссийск. конф. молодых ученых с международ. участием. Саратов: Изд-во «Саратовский источник». 2021. С. 54-56.
- 2. Bakunova A.K., Matyuta I.O., Nikolaeva A.Yu, Boyko K.M., Popov V.O., Bezsudnova E.Yu. Interaction of D-cycloserine with a D-amino acid transaminase from *Haliscomenobacter hydrossis* // Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022): The Thirteenth International Multiconference. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences. Novosibirsk: ICG SB RAS. 2022. P. 273.
- 3. Бакунова А.К., Бойко К.М., Николаева А.Ю., Ракитина Т.В., Попов В.О, Безсуднова Е.Ю. Трансаминаза из *Haliscomenobacter hydrossis*: причины и смысл перестройки активного центра при диссоциации кофактора пиридоксаль-5'-фосфата / Научные труды. VI съезд биохимиков России, Сочи, Дагомыс (3-8 октября 2021) М.: Издательство «Перо». 2021. Т. 2. С. 121.

- 4. Bakunova A.K., Matyuta I.O., Boyko K.M., Khrenova M.G., Popov V.O., Bezsudnova E.Yu. Revealing the structural basis of promiscuous activity of D-amino acid transaminase from *Haliscomenobacter hydrossis* // Novel Enzymes 2023. 7th International conference on Novel Enzymes. Greifswald (Germany) Austria: Published by ChemIT. 2023. P. 111.
- 5. Бакунова А.К., Матюта И.О., Бойко К.М., Попов В.О., Безсуднова Е.Ю. Активность трансаминазы из *Haliscomenobacter hydrossis* в реакциях с D-аминокислотами и (R)-аминами: стабилизация и специфичность // Тезисы докладов 13-ой Международной научной конференции «Биокатализ. Фундаментальные исследования и применения» (г. Суздаль, 25-29 июня 2023 г.) М.: Издательство «Адмирал принт». 2023. С. 43.
- 6. **Бакунова А.К.**, Матюта И.О., Бойко К.М., Попов В.О., Безсуднова Е.Ю. Многофункциональность остатков аргинина активного центра неканонической трансаминазы D-аминокислот из Haliscomenobacter hydrossis // Сборник тезисов докладов X Всероссийской научной молодежной школы-конференции «Химия, физика, биология: пути интеграции». М.: Издательство ФИЦ ХФ РАН. С. 111-112.

Рекомендуемые оппоненты:

Шевцова Елена Феофановна, доктор химических наук, главный научный сотрудник, и.о. заведующей лабораторией биомолекулярного скрининга Института физиологически активных веществ Федерального государственного бюджетного учреждения науки Федерального исследовательского центра проблем химической физики и медицинской химии Российской академии наук

Азат Габдрахманович Габдулхаков, кандидат физико-математических наук, ведущий научный сотрудник, руководитель группы структурных исследований макромолекулярных комплексов Федерального государственного бюджетного учреждения науки Институт белка Российской академии наук.

Рекомендуемая ведущая организация

Федеральное государственное бюджетное учреждение науки Институт молекулярной биологии имени В.А. Энгельгардта Российской академии наук

Диссертация «Трансаминаза D-аминокислот из *Haliscomenobacter hydrossis*: каталитические свойства и структура» Бакуновой Алины Константиновны на основании проведенного семинара рекомендуется к защите на соискание ученой степени кандидата химических наук по специальности 1.5.4. Биохимия.

Заключение принято на заседании совместного семинара лабораторий инженерной энзимологии, химической энзимологии, структурной биохимии белка, белок-белковых взаимодействий и группы молекулярного моделирования Института

биохимии имени А.Н. Баха Федерального государственного учреждения «Федеральный исследовательский центр «Фундаментальные основы биотехнологии» Российской академии наук», протокол №5 от «28» февраля 2024 года. Присутствовало на семинаре — 23 человека. Результаты голосования: «за» - 23 человека, «против» - нет, «воздержалось» - нет.

Председатель совместного семинара лабораторий

Заведующий лабораторией химической энзимологии,

доктор химических наук, профессор

А.И. Ярополов

Секретарь

Научный сотрудник лаборатории

белок-белковых взаимодействий,

кандидат биологических наук

KBng

К.В. Перфилова

24.07.24

